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Lattices, supersymmetry and Kahler fermions 

D M Scott 
Physics Department, University of Edinburgh, Edinburgh EH9 332, UK 

Received 22 July 1983 

Abstract. It is shown that a graded extension of the space group of a (generalised) simple 
cubic lattice exists in any space dimension, D. The fermionic variables which arise admit 
a Kahlerian interpretation. Each graded space group is a subgroup of a graded extension 
of the appropriate Euclidean group, E ( D ) .  The relevance of this to the construction of 
lattice theories is discussed. 

1. Introduction 

There are good reasons for studying lattice approximations to supersymmetric theories. 
Two examples will suffice to make the point. 

(a) It is too easy to write down a gauge invariant action and one would like further 
constraints to restrict the possibilities when model building. Supersymmetry would 
provide further constraints, but in order to produce a realistic particle spectrum it 
must be broken. Lattice regularisation provides the best framework known at present 
for the study of spontaneous breakdown of symmetry. It would be desirable, therefore, 
to be able to construct a lattice approximation to a supersymmetric continuum model. 

(b) Difficulties are encountered when trying to describe fermions in lattice theories. 
If supersymmetry is taken seriously it should uniquely determine the form of the kinetic 
term for fermions, given the form of the bosonic term, as supersymmetry 
transformations relate the two. 

There are difficulties in deciding what one means by a lattice approximation to a 
supersymmetric continuum theory. Several proposals have already been made, some 
of them using a Euclidean formulation (Dondi and Nicolai 1977, Nicolai 1978, Banks 
and Windey 1982), and others using a Hamiltonian formulation (Rittenberg and 
Yankielowicz 1982, Elitzur et a1 1983). What all of these approaches have in common 
is that they are based on modifications of the graded Lie algebra of the super Lie 
group. This is not the only possible approach. Sakai and Sakamoto (1983) have a 
scheme based on the Nicolai (1980a, b) mapping, and yet another approach is described 
in this paper. 

A lattice model which contains only bosonic fields is invariant under the action of 
some space group which depends on the type of lattice chosen. This space group is a 
subgroup of the Euclidean group E(D) if the model is in D dimensions. It can be 
thought of as a discrete approximation to the Euclidean group. As the lattice spacing 
of the model is reduced, whilst at the same time the couplings are renomalised, this 
approximation becomes better and better until Euclidean invariance is restored (at 
least one hopes that this will happen). An immediate generalisation is possible: a 
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lattice approximation to a supersymmetric model should be a lattice model which is 
invariant under a graded extension of the space group of the part of the action involving 
only the bosonic variables, this graded space group being a subgroup of a graded 
extension of the Euclidean group. Invariance under the complete graded Euclidean 
group should be recovered as the cut-off is removed. This is the point of view taken 
here. It is perhaps worth mentioning that some examples of discrete graded groups 
have been known for some time (Rogers 1981a, b). 

After some algebraic preliminaries in § 2 it is shown in 0 3 that discrete graded 
groups of the type described above do exist for 'cubic' lattices (cubic being suitably 
interpreted according to the dimension being considered). The preservation of the 
cubic symmetry ensures that the theory is invariant under Euclidean transformations 
in the naive continuum limit (Elitzur et a1 1983). An interesting conclusion which is 
arrived at is that introducing a cubic lattice in superspace forces one to consider 
extended models whose fermions admit a Kahlerian interpretation. This suggests that 
the language of differential forms may be useful in obtaining a lattice approximation 
to the continuum action-a prejudice which is reinforced by the observation that the 
de Rham, cubical and simplicial cohomology theories are isomorphic. 

In § 4 it is shown how in the case of generalised nonlinear a-models in two 
dimensions these ideas lead to a seemingly natural procedure for transcribing the 
continuum action to obtain a lattice action. 

In § 5 a difficulty encountered when adopting this approach is explained. 
Section 6 is the conclusion. 

2. Algebraic preliminaries 

Let CL denote the complex Grassman (exterior) algebra over CL. Let ML denote the 
set of sequences (Kostant 1977, Rogers 1980) 

{p ip  =o(L,, pU.2,. . , pk), 1 s < p 2 < .  . t .  <pk SLj  pt E Z  for 1 s is k ) .  

Let R represent the empty sequence in ML, and let ( j )  denote the sequence with just 
one element, j .  Then there exists a basis of C, of the form {P,,lp E ML} with 

Pn=1 (the unit of CL) 

P W  = P t W l j P ( P Z j  ' ' ' P ( P k i  

P ( I i P ( , )  = -P( , )Pw 

for all p E ML 

for 1 s i, js L. 

(An infinite dimension Grassman algebra, CW, can be defined-see Rogers (1980) for 
details.) 

If b = Z F E M L  a,P, where a,, E C for all p E ML then its conjugate, b*, is defined 
to be E, G,p: where the bar denotes complex conjugation, and 

P: ( P ( f i l ) P ( P 2 )  ' ' ' P ( W k ) ) *  := P i P k ) P ( P k - l )  ' ' ' P ( W , ) '  

An element b E CL is called self-conjugate if and only if b* = b. The set of self-conjugate 
elements, &, inherits the structure of a real vector space. It is not, however, a 
self-conjugate Grassman algebra for whilst 

Pi5 = P o ,  for all i, 1 S i s L, 

(P(t,P(,,>* = - P ( i ) P ( , i .  
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By associating appropriate factors of the square- root of minus one with the elements 
of the basis {p,}  of C, a self conjugate basis {p , }  can be constructed which is also a 
basis for gL 

where the subscript ‘0’ indicates that elements of the space are linear combinations of 
basis elements with an even number of subscripts, or no subscripts (i.e. even elements), 
and the ‘1’ indicates that the elements of the space are linear combinations of basis 
elements with an odd number of subscripts (i.e. odd elements). 

It is convenient to introduce the objects 

3. Graded extensions of the space group of the simple cubic lattice 

Consider, for the moment, two dimensions. In two dimensions a Dirac spinor has two 
complex components and the Clifford algebra is 

1s b, c s 2 .  

A representation of this algebra is given by Y b  = -iub (the U ’ S  being the familiar Pauli 
matrices). 

{Yb, Yc) = -2Sb,ci 

A possible graded extension of the subgroup of translations of E(2) is 

(xb, 6,) (Yb, E , )  := (xb + Y b  + etybE - ?be, ea + 
where xb, Y b  E &, 1 s b s 2; and e,, E,  E CL,l, 1 s a s 2. A discrete subgroup is 
obtained by insisting that elements have the form 

(amb, (a/2)”2{pu +iSa})3 mb E z L . 0 ,  Pa3 %x E ZLJ. 

Here ‘a’  is the lattice spacing. The multiplication law for the complete group is 
(dropping indices) 

[A, (1, e) lx[r ,  ( y ,  &)I:= [ A r ,  (x, e ) o ( R ( A ) y ,  A&)]. 

A and r are elements of Pin(2). (Pin(2) bears the same relationship to O(2) as Spin 
(2) bears to SO(2); there is a projection mapping p :  Pin(2)+ 0 (2 ) ,  see Curtis (1979) 
for details.) R is the vector representation of Pin(2). Now a rotation through 90” in 
the bosonic subspace corresponds to a rotation through only 45” in the fermionic 
subspace, consequently the set of elements of the form 

[A’,  (amb, (a/2)1’2{p, +iqa})] 

where A‘ is an element of Dk do not form a subgroup. (Dk=p-’(D,).) 
This problem can be overcome by the introduction of a Pin(2) internal symmetry 

group. The Grassman variable 8, acquires an extra label and can be thought of as a 
2 x 2  matrix (aui). Now any 2 x 2  matrix can be written as a linear combination of 
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the matrices 1( = 12),  r,( = y,), and T12( = y1y2  = -iu3). The equation 

o,, = 6+u-,)o, (1) 

defines the coefficients 6* ( p  stands for a set of indices as usual). Under the action 
of the spinor rotation group @-A@, A ~ P i n ( 2 ) ,  and under the action of the internal 
symmetry group 0-0 Ut, U E ~ i n ( 2 ) .  

Under the action of the diagonal subgroup obtained by insisting that A =  U, 
OHAOA',  and the coefficients 8, transform like tensors as their indices suggest. If 
one insists that A = U E D: the external and internal symmetry transformations combine 
to produce 90" rotations (or multiples thereof) of the 6,'s. Consequently the 6,'s can 
be restricted to a discrete set of values and a discrete subgroup exists of the N = 4 
graded Euclidean group with Pin(2) internal symmetry group. N can be reduced to  
2 by imposing a pseudo-Majorana condition: 

0 = B@*B-' 

where B is a matrix with the property that 

By2B-I = -ya. 

In the Pauli representation B = y1 is a possible choice. 
In D dimensions analogous results can be obtained by introducing a Pin( D )  internal 

symmetry group to complement the Pin( D )  (spinor) rotation group. In four dimensions 
this procedure leads to an N = 4 theory. 

The connection with Kahler fermions (Kahler 1962) can now be seen. The exterior 
algebra of differential forms in any dimension can be given the structure of a Clifford 
algebra (Kahler 1962, Atiyah 1970). Using this fact one can associate a spinor of the 
form given in equation (1) with a differential form, and the Dirac equation can be 
transcribed with the aid of the exterior derivative into an equation involving differential 
forms (Kahler 1962). (The situation is slightly more complicated in odd dimensions 
that in even dimensions because the irreducible representations of the Clifford algebra 
are not faithful.) 

Elitzur et a1 (1983) have come to similar conclusions in 1 + 1 and 3 + 1 dimensions. 
Their approach rests on the Hamiltonian formalism and concentrates on the super Lie 
algebra rather than the group. 

4. Two-dimensional nonlinear models 

The pseudo-Majornana condition implies that a fermionic variable 9 has the form 

Introducing the column vector I+!J = (z), 9 can be thought of as being composed of two 
column vectors I+!J and uI4*. Then 

Tr(Y'r,@) = ILtT,6 - 6'r,$ 

where 6 bears the same relationship to 0 as I+!J bears to 9. In this new notation the 
subgroup of translations of the N = 2 supersymmetry group in two dimensions has the 
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composition law 

(x,, e,)+,, E , )  = (x, + Y ,  + e t r , E  - &e, 6, + E , ) .  

Except for the fact that there are only two bosonic coordinates this is the composition 
law of the N = 1 supersymmetry group in 3 + 1 dimensions written in terms of Weyl 
spinors. The combinatoric properties of the representation theories are therefore the 
same, only the spin content differs, hence there is a two-dimensional analogue of the 
chiral multiplet: 

A, +, := Q,A, F u p  := Qu+p = Q,QpA, Q,A := 0. 

Here the Q's are the generators of supersymmetry transformations. The action is 
(Wess and Zumino 1974) 

d2x[(d,A)(d,A) +++t2++$mpF,p]. 

Now 

Tr(YtfiY) =+";$ = +'~?+-(a,+~)y,+. 

So if one thinks of the fields as differential forms, and one introduces the exterior 
derivative d and the inner product of differential forms, the action can be rewritten as 

( (d+d')A,  ( d + d t ) A ) + ( Y ,  (d+d ' )Y)+(F ,F ) ,  F := ~ E , ~ F , ~ ,  

which has the obvious lattice approximation (Becher 1981, Rabin 1982, Becher and 
Joos 1982) 

( ( 8  + St)A, (S+S'jA)+(Y, ( 6 +  St )9 )+(F ,  F )  

where S is the coboundary operator defined for the square lattice and ( , ) is the inner 
product of cochains. Nonlinear models have a similar structure (Zumino 1979) and 
can be treated in an analogous fashion. 

Supersymmetry is realised in these models through the following transformations: 

AHA+iJ2&ICI+(ET,&)C1,A+~FE+iiJ2(ET,&)a,(EICI)++(EE)2a2A, 

+bp W $p -iJ2(T,&)pdaA + i h ( E F ) p  + (aT,&)a,$p + 2( T,&)pa,( E $ )  
- 

-iJ2(ET,&)a,(EF)p -iJ2.cp(E~)a2A - + ( E E ) ~ C ? ' ~ ~ ,  
- - 

F P y ~ F p y - i J 2 ( ~ , ~ ) p a , $ ,  +iJ2(7,&),~3,lClp -~E~E,C?'A +(T ,E)pd , (EF) ,  
- 

-(T,E),~,(EF)~ - ~ J ~ E ~ E , ~ ~ ( E $ )  + - $ ( B E ) ~ ~ ~ F ~ , .  

Benn and Tucker (1983) have succeeded in writing various supersymmetric actions 
and their linearised transformation laws in terms of differential forms. 

To complete the programme a realisation of the graded space group on the lattice 
fields must be given. Furthermore a prescription should be given for the construction 
of a third supermultiplet from two given supermultiplets. In order to be able to do 
this a definition of the product of two lattice Kahler fields is needed. 

5. The Clifford product 

A product is defined in cohomology theories which is called the cup product (in de 
Rham cohomology it is called the wedge product), but this product cannot be identified 
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with the Clifford product which occurs in the albegra of the y-matrices, and it is the 
Clifford product whose analogue is needed to be able to define the product of two 
lattice Kahler fields. In the continuum one has 

0 ~ = ( 8 , 1 +  eara+e12r12)($,1+$ara+~12r12) 
=(e&$+- ea$a-e12$12)1 + ( e & l ( l a + e a ~ ~ - e b $ b a - e b a $ b ) r a  

+ ( @m$L12 -k 61 2 $d + &abea$b )rl2. 

In a lattice analogue of this equation the coefficients of 1 would be associated with 
sites, the coefficients of rl and T2 with links in the 1 and 2 directions respectively, and 
the coefficients of rI2 with plaquettes. As this equation shows, one must be able, for 
instance, to compose two link variables associated with links pointing in the same 
direction to obtain a site variable. Becher and Joos (1982) have put forward a definition 
of such a product, but their definition suffers from the drawbacks that it is not associative 
and does not repsect the cubic symmetry of the lattice. These difficulties remain to 
be resolved. 

6. Conclusion 

By combining the idea that a lattice approximation to a continuum supersymmetric 
model should be invariant under the action of a discrete subgroup with some 
cohomology theory and the Kahler description of fermions some progress has been 
made towards the construction of a ‘supersymmetric’ lattice model. The chain of 
argument shows that insisting on a sort of cubic symmetry which guarantees Euclidean 
invariance in the naive continuum limit forces one to consider extended supersym- 
metries. The central problem in this way of viewing things is the definition of an 
analogue of the Clifford product which is appropriate to the lattice formulation. 

Whilst there are still difficult problems to be resolved I believe that the approach 
outlined in this paper offers some hope of leading to a meaningful lattice approximation 
to a continuum model, and I think that it is worthy of further study. 

After this work was completed a preprint was received at Edinburgh by Kosteleck9 
and Rabin (1983). These authors have also hit upon the idea of using discrete subgroups 
of the supersymmetry group, but they consider the subgroup of translations only, and 
not its interaction with the subgroup of Lorentz transformations (they work in 
Minkowski space where the introduction of a lattice ruins invariance under boosts). 
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